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We study the electrical and hydraulic conductivity percolation exponents in a Gaussian fracture using the
method proposed in Plouraboué et al. �Phys. Rev. E 73, 036305 �2006��. Nonuniversal conductivity percola-
tion exponents are found: they differ from the theoretical predictions for infinite system size for frozen
power-law distributions of local conductivities, as with their finite size corrections. In the hydraulic case, we
also find that the probability density function of the conductivity follows a power-law distribution near the
percolation threshold.
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I. INTRODUCTION

In this paper we study the electrical and hydraulic trans-
port properties of a Gaussian fracture near the percolation
threshold since this question has not been previously inves-
tigated for this particular continuum percolation system �2�.
When the two rough surfaces forming the fracture are
pressed together under the effect of an applied load, local
gaps remain in between them due to imperfect matching.
These local gaps form the so-called aperture field, which
represents a continuous two-dimensional �2D� scalar descrip-
tion of the empty space left for a fluid to flow between the
two solid surfaces. As illustrated in Fig. 1 for a smooth sur-
face pressed onto a rough one, the local value of the aperture
field is zero when two solid surfaces are in contact. As pre-
viously explained in �1� and illustrated in Fig. 1�b�, this con-
tinuum problem can be mapped onto a discrete network of
links. As a result, two intensive parameters can be used to
describe the evolution of such systems: the normalized sur-
face area, A, or the link fraction, p, which are normalized so
that 0�A�1 and 0� p�1. The normalized surface area A
is the ratio of the contact surface area to the total surface
area, i.e., the relative surface contribution of closed regions
of the aperture field �white regions in Fig. 1�b��. Within the
limit of pure plastic deformation of asperities, there is a
simple relationship between the normal applied load W, and
the contact area: W=�A, where � is the Brinell hardness. At
the percolation threshold, A reaches a critical value Ac and
the mechanical hardness reaches a limit value when the leak-
age drops to zero according to a power law of the controlling
parameter Ac−A. In previous studies on fractures �2�, the
open fractional area, i.e., Ao=1−A, is used to characterize
the occupation probability of the system �Ao can be regarded
as a site occupation probability�.

The second parameter that is used is the network link
fraction, p, which is the number of links in the discrete net-
work divided by the total number of links when there is no
contact between the two surfaces. The relationship between
the link fraction and the surface geometry is more difficult to
grasp. One has to realize that the major resistance to fluid
flow is localized in constrictions associated with the aperture
field saddle points. The resistance network is a random dis-
crete bond network for which the distance to the percolation
threshold pc is evaluated through the traditional controlled
parameter �= p− pc. For the sake of completeness, we shall
present the results using both � and Ac−A.

II. RESULTS

A. Local conductance distribution near percolation threshold

We have previously shown, in Eq. �10� of �1�, that the
local conductances of the links are power-law distributed for
small conductance values so that their probability density
functions �PDF� fulfill p�gn��gn

−�n−1�/n. In the case n=1 there
is no singular behavior of the PDF. On the other hand, when

(a)

(b)

FIG. 1. �a� A 3D rough surface pressed onto a solid plane leaves
empty spaces which form a 2D aperture field. �b� From this aperture
field, it is possible to generate a discrete network of geodesics con-
necting the aperture maxima �1�. White regions are associated with
regions of contact between the two surfaces where the local aper-
ture is zero, while gray regions are those associated with nonzero
aperture regions. Some level sets of the aperture map are repre-
sented with dotted curves in these gray regions. The geodesic net-
work linking maxima is represented with continuous black lines,
where the maxima are represented by gray filled circles. The saddle-
point position along these geodesic networks are represented by
triangles.
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n=3, p�g3��g3
−2/3 diverges algebraically as g3→0+. We

study this power-law behavior more carefully near the per-
colation threshold and we find that the local hydraulic con-
ductance PDF p�g3� fulfills

p�g3� = Cg3
−2/3 for g3 � 1 with

C��,N� = a��N�� + b��N� or

C�A,N� = aA�N�A + bA�N� �1�

The prefactor C depends on the system size N as well as on
the distance to the percolation threshold �= p− pc. The coef-
ficients a�, b�, aA, and bA of the linear relations defined in Eq.
�1� are given in Table I. This dependence of the bond distri-
bution on the distance to the percolation threshold is a key
ingredient which is specific to this problem, and no other
studies on similar continuous percolation problems have
been found. The following sections show how this depen-
dence significantly affects the behavior of the system.

B. Percolation thresholds

Percolation thresholds pc and Ac are determined for each
of the Nr realizations �see �1� for details�. The fraction of
percolating realizations P�X� is fitted by the two-parameter
error function: P�Xa,���X�= 1

2 �1+erf�
X−Xa
�2�

��, where variable X
is either p or A, and Xa is either pa or Aa, the averaged
percolation thresholds, which tend towards their expected
values pc and Ac for large system sizes �see Table II�. As
mentioned in �2�, behavior of the form pa− pc�N−1/� and
��N−1/� is expected. Identifications of � and pc and Ac can
be obtained from these scalings. This yields ��1.57	0.02,
pc=0.4954, when p is used to characterize the occupation
probability and ��1.48	0.02, Ac=0.4984, when A is used.
Interpolations from Table IV of �2� yield ��1.40 and Ac
=0.492 for a / l=0.159 �which is the inverse of the number of
points of the surface per correlation length� are indeed con-
sistent with our results. As discussed in detail in �2�, the
departure from the site percolation standard values ��
�1.33, Ac=0.40725� is due to the spatial correlation in the
distribution of site—or bond—occupation.

C. Electrical and hydraulic conductivities

In this section we compute the conductivity exponent with
a direct inversion method as described in �1�. For each of the
presented results, the computation cost of the transport prob-
lem inversion is much smaller than that of calculating the
geodesic network. This is why, although other alternatives,
such as those proposed in �3,4�, could have been used to
address the transport problem, it is acceptable to use a stan-
dard sparse matrix inversion.

The variation of the electrical conductance associated
with the case n=1 was computed. A very clear power-law
behavior was observed near the percolation threshold, and a
power-law fit of the form G1=G1�t led to the values summa-
rized in Table III. The electrical conductivity exponent con-
verges toward the value t=1.52	0.02 for increasing system
size, which is slightly higher than the universal value of 1.3
for 2D systems �see Eq. �2� below�. Very similar estimations
of the exponent t were also obtained when considering the
electrical conductance variations with Ac−A. The hydraulic
conductivity associated with the case n=3 is shown in Fig. 2.
Here again, the evolution near the percolation threshold is
consistent with power-law fits of the form G3=G3�t and G3
=G3�Ac−A�t. The values obtained for the exponent t are pre-
sented in Table III for the case where � is the control param-
eter. As the system size increases, the hydraulic conductance
exponent rapidly reaches a constant asymptotic value that
was found to be t=2.8	0.05. The prefactors G1 and G3 also
vary with the system size N and we found G3�30.1N−0.68

and G3�9.8
10−3N−0.65 for � and Ac−A as control param-
eters, respectively. The scale obtained for the conductivity
prefactor can be understood if one considers that the red-
bond conductivity gr dominates the conductivity. If Nr is the
number of such red bonds, the total conductivity G should
scale as G−1��i=1

i=Nr1 /gi
r since red-bond conductivity should

be added in series in the nodes-link-blobs picture. Consider-
ing that the fractal dimension associated with the red bonds’
spatial distribution is D=3 /4 �5�, the red bond number
should scale with the system size N as Nr�N3/4, so that,
finally, the conductivity should scale as G�1 /Nr�N−3/4.
This prediction is in reasonable agreement with the scaling
reported for the conductivity prefactor, which is close to
−0.7. The entire PDF of G is also of interest, especially when
statistical prescriptions are mandatory. Figure 3 shows the
evolution of the PDF of G3 for several values of � and A. Far

TABLE I. Coefficients of Eq. �1�.

�a�
N a��N� b��N�

128 0.53 −0.86

256 0.60 −0.92

512 0.66 −1.04

1024 0.71 −1.10

2048 0.74 −1.11

�b�
N aA�N� bA�N�

128 0.111 8.8
10−3

256 0.173 9.1
10−3

512 0.214 9.3
10−3

TABLE II. Parameters of percolation probability fits for differ-
ent system sizes. Nr is the number of realizations.

X=A X= p

Pa � Nr Pa � Nr

N 64 46.91 10.32 600 44.87 11.61 600

128 48.01 6.70 600 46.73 7.87 600

256 48.94 4.30 600 48.23 5.16 600

512 49.31 2.63 600 48.90 3.19 600

1024 49.62 1.59 600 49.54 1.96 600

2048 49.90 1.03 118 49.88 1.36 57
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from the percolation threshold it is well represented by a
log-normal distribution. In contrast, in the vicinity of the
percolation threshold, the PDF of G3 exhibits a power-law
behavior p�G3��G3

−� associated with the lowest values of
the conductivity over more than five decades. The estimation
of the associated power-law exponent � is between 0.7 and 1
depending on the distance to the percolation threshold.

III. DISCUSSION

This section presents the conductivity exponents obtained
in the light of previous studies on continuum percolation
�6–10� for which the local conductances g are power-law
distributed such that their PDF takes the form p�g��g−,

where 0��1. It is now well established �7–10� that the
theoretical prediction of the conductivity exponent t of a per-
colating system is given for a system of infinite size by

t = max��d − 2�� + �1 − �−1,tu�, 0 �  � 1, �2�

with � the universal correlation length exponent, d the sys-
tem dimensionality, and tu the universal value �tu�1.3 in 2D
�11��. Referring to the conductance distributions of our sys-
tem, n=2 �resp. 3� corresponds to =1 /2 �resp. 2 /3� and Eq.
�2� leads to t= tu �resp. t=3�, which differs from the values
1.52 �n=2� and 2.8 �n=3� obtained numerically for our sys-
tem. As pointed out by Tremblay and Machta �see �6� and
references therein� there has been some controversy in the
literature about conductance exponents because of their re-
ported finite-size sensitivity. Hence it was interesting to ex-
plore the possible influence of finite size effects on the ex-

TABLE III. Exponents of power-law fits of conductivity as a function of system size N for various
systems. G1 and G3 refer to the electrical and hydraulic conductivities, respectively, of Gaussian fractures.
The case G2 is for a Gaussian fracture with a local conductivity of the form g2�h2�xs�. Nr is the number of
realizations.

N G1 G2 G3

t Nr t Nr t Nr

64 1.3	0.1 400 1.41	0.05 500 2.3	0.1 500

128 1.39	0.05 400 1.61	0.05 300 2.71	0.03 500–1200

256 1.44	0.05 300 1.71	0.02 200 2.74	0.03 1000–2000

512 1.46	0.04 130–180 1.72	0.02 100 2.80	0.01 500–1800

1024 1.49	0.05 119–120 1.75	0.05 50 2.79	0.02 50–250

2048 1.51	0.03 30–52 1.86	0.05 48 2.77	0.01 51–59
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FIG. 2. Evolution of hydraulic conductivity versus � in �a� and
Ac−A in �b�.
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FIG. 3. PDF of G3 in bilogarithmic coordinates versus � in �a�,
versus A in �b�.
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ponents we found for the Gaussian fracture in greater depth.
To do so, we also used a frozen power-law distribution of
local conductances p�gn��g− for specific values of param-
eter , i.e., =0,1 /2,2 /3, which correspond to n=1,2 ,3,
respectively. This case is distinct from Eq. �1� where the
prefactor of the power law varies with the distance to perco-
lation. The results obtained for the exponent t are summa-
rized in Table IV. It can be observed that, in each case, the
measured exponent exhibits a dependence on the finite size
which does not saturate even for the largest systems. As pre-
viously mentioned, the effective system size is N /2�, so that
N=2048 corresponds to a system of approximately 326 cor-
relation lengths. In this case, for =0, the parameter t was
found to be equal to 1.40	0.04. Our direct sparse matrix
inversion can be compared with the results reported by
Tremblay and Machta �6� using a numerical renormalization-
group procedure. In two dimensions, they investigated the
case =0, for apparent system sizes as large as 102 and 103,
and found apparent exponents of t=1.42	0.02 and t
=1.49	0.02, respectively, while the theoretical prediction
for infinite systems is 1.3 from Eq. �2�. Hence our calculation
is consistent with their predictions. In the case =1 /2, they
found t=2.08	0.04 and t=1.97	0.06 for apparent system
sizes of 102 and 103, respectively, while we consistently
found t=2.0	0.1 for a system size equal to 326. This vali-
dation with previous results confirms that the ideal prediction
�2� is rarely relevant for finite size systems. Interestingly, the
values reported in Table III reveal that the exponent is much

less affected by the finite size effects for the Gaussian frac-
tures than in the case of frozen power-law distributions. This
is especially true with =2 /3, where the convergence of the
asymptotic value t=2.78	0.02 found for the transport expo-
nent is reached for an effective system size as small as 81. As
pointed out, for example, in �12�, the conductivity of the
system under consideration can be expressed as G�	G
�−tu

where 	G
 represents the average value of the link conduc-
tance in the system. The nonuniversal contribution to the
conductivity exponent t− tu is determined only by 	G
. Thus
the particular behavior of our systems is consistent with the
fact that 	G
 behaves differently than with a frozen conduc-
tivity distribution because of two distinguishing features. The
first one relies on the local conductances variation with the
distance to the percolation threshold �cf. Eq. �1��. The second
is the fact that the probability that a bond becomes inactive is
not independent of its conductivity in our system.

In addition to the consideration of a new class of con-
tinuum percolation, the results presented should be of inter-
est in the context of flows in fractures for which power-law
behavior between applied pressure and transport coefficients
has been reported experimentally �13�.
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